YakStack: A Decentralized Yik Yak Built on the Blockchain

Margaret Li
Collaborator: Sarah Pan
Advisor: Michael J. Freedman
Fall 2017 Independent Work

Abstract

The blockchain is a revolutionary technology origi-
nally devised as the infrastructure of Bitcoin. Essen-
tially a distributed database of information across a
network of computers, the blockchain boasts three
key features—decentralization, individual owner-
ship of data, and tighter security—which make
it relevant to all fields involving the storage and
sharing of data. One emerging application of
blockchain technology is in social networks, which
transport user information across numerous devices
and servers. Networks currently rely on a trust-based
model, in which an intermediary stores and man-
ages user data. However, the vulnerabilities of these
intermediaries could jeopardize the security of the
whole network and the safety of its users. Built on
top of the blockchain, social networks can eliminate
this central authority and increase security and trans-
parency. This paper details our project to construct
YakStack, a blockchain-based version of the defunct
anonymous platform Yik Yak.

1 Introduction

Social networks currently follow an increasingly out-
dated architecture in which a trusted middleman, in the
form of remote servers, stores and manages user data.
Unfortunately, the middleman is a prime target for hack-
ers, who frequently breach security barriers and steal data
from millions of users.! This brings up the question of
how social networks can be redesigned to eliminate inter-
mediaries and thus the security hazards associated with
them.

1.1 What is Yik Yak?

Yik Yak was a short-lived, anonymous micro-blogging
application launched in 2013. The app contained a simple

L Ali, Shea, Nelson, Freedman, Blockstack: A New Internet for De-
centralized Applications

but well-liked interface: anonymous posts, upvote and
downvote, comments, and a location-based list of trend-
ing yaks. Users did not have to create accounts and were
instead assigned random logos and IDs, thus masking ev-
eryone's identity from each other. For many users, Yik
Yak served as a haven for comic relief and for uniting a
community over common struggles; however, a few users
abused their anonymity and posted threats, putting Yik
Yak under heavy scrutiny. Yik Yak rebranded itself as a
non-anonymous group messaging platform, causing it to
lose popularity before shutting down in 2017.2

Like other social networks, Yik Yak operated on top of
a centralized model that rendered users susceptible to at-
tacks on the server. Yik Yak's selling point was that posts
were public but not publicly traceable to the poster, which
encouraged users to post without any inhibitions. Any-
one who hacked into Yik Yak's central system would gain
access to not only records of who posted what, but also
IP addresses, GPS locations, and phone numbers, which
would endanger the confidentiality, reputation, and safety
of the users.?

1.2 The Blockchain

The blockchain is a distributed ledger that records almost
any form of information (e.g. transactions, smart con-
tracts, user accounts, etc.). Originally built as the back-
bone of Bitcoin to address the flaws of trust-based finan-
cial transactions, the blockchain has expanded its use to
nearly every field. Multiple computers form a peer-to-
peer network that continuously updates the blockchain.
When a transaction is executed, the network verifies it
through a process called consensus. This process en-
sures transparency of information. The blockchain itself
consists of a long chain of blocks, each of which stores
verified transactions in chronological order. Each block
is signed with the hash of the previous block. Thus, if

2Statt, The Verge
3Buntinx, Bitcoinist.com

someone were to alter information on the blockchain, the
stored signatures would reveal that data has been cor-
rupted; this means that all transactions on the blockchain
are immutable and irreversible. Since all transactions on
the blockchain are public, permanent, and verified, they
are guaranteed security. Furthermore, each participant in
the network stores and contributes to the blockchain, giv-
ing ownership of data to the participants and making it
decentralized. These qualities make the blockchain a use-
ful tool for redesigning centralized social networks. *

1.3 Goal

Our goal is to revive the early version of Yik Yak,
and to build it in a decentralized manner on top of
the blockchain. We chose Yik Yak because it was the
first successful pioneer of anonymous content sharing
platforms, and though it was embroiled in controversy
over malicious users, the majority of content (at least
from Princeton students) was innocuous, lighthearted,
and worth the download. Decentralizing Yik Yak brings
a couple of benefits:

¢ Individual ownership of data: the blockchain stores
each user's information locally on his/her device,
giving the user ownership of his/her posts. This cre-
ates a network of all devices using Yik Yak that work
together constantly to update user information and
contribute new posts.

 Security: because information is not stored in a sin-
gle location, there no longer exists a central system
that a hacker can target, and users can be guaranteed
confidentiality of identity.

* Transparency: centralized social networks lack
transparency when it comes to how they exploit user
data. Since information is now stored across all de-
vices on the network, no single authority exists to
control this data. In fact, everyone on the network
can view other users' posts without seeing the users'
identities, which is a perfect set-up for Yik Yak.

1.4 Related Work

There are a number of spinoffs that emulate certain as-
pects of Yik Yak, but none share quite the same features
as the original. Hive (released by former Yik Yak em-
ployees) and Islands are chatrooms for college students to
discuss classes and meet up, and they require usernames.’
Whisper is an anonymous confessional platform that or-
ganizes content based on topics, rather than by location
as Yik Yak did. Sarahah is an anonymous feedback app
that encourages users to evaluate each other.

4Nakamoto, Bifcoin: A Peer-to-Peer Electronic Cash System
SNewton, The Verge

Decentralized social networks have been released, but
they all require public user profiles and special tokens,
making it harder for the average user to join. Steemit
operates like Twitter but also compensates contributors of
popular posts with a Steem cryptocurrency, and requires
users to create wallets. Synereo, SocialX, MaskNetwork,
and Yours.Network all follow a similar model that reward
content contribution with tokens.

2 Implementation

In designing YakStack, we aimed for a clean, easy-to-use
interface. The app consists of a “Your Profile” page, on
which a user can post a yak or view his/her past yaks, and
a “Trending Yaks” page, on which a user can view and
vote on other people's yaks.

YAKSTAK

trending yaks

M’r'\te ayak (press enter to submit)

Figure 1: YakStack user profile page

YakStack is built on top of Blockstack, a blockchain-
based browser created by Princeton alums. On Block-
stack, users can register IDs that are stored on the
blockchain and choose where their yaks are stored lo-
cally. We coded in Vue.js and Bootstrap, the same frame-
works that Blockstack's examples use. We modeled some
of YakStack after Blockstack's Todo app, a single-read
application that stores a user's todo items.®

Centralized Yik Yak relied on servers scattered across
different geographic locations. When a user posted a yak,
the app would retrieve his/her GPS coordinates and send
the yak to the server covering that location. If a user
opened the app, the server in his/her region would send
its yaks to the user's device. By contrast, our implemen-
tation is server-free and relies instead on the users' local
computers, due to the architecture of Blockstack that I
will detail below.

Shttps://github.com/blockstack/blockstack-todos

2.1 Blockstack

Blockstack is a decentralized internet built on top of the
blockchain that provides identity, discovery, and stor-
age services. Users register human-readable IDs that are
stored on the underlying blockchain, which enables dis-
covery of other users on the network. Blockstack IDs
are secure because of the immutability and transparency
guaranteed by the blockchain. With an ID, a user can sign
in to a variety of applications available on the Blockstack
internet, such as YakStack.”

On centralized sites, user data is pushed to remote
cloud servers, leaving the users' local devices with lit-
tle to process. This places a burden on the servers to
handle all the complexity efficiently and securely. Gaia
is Blockstack's decentralized storage system that reverses
this situation and keeps user data local without requiring
users to run their own servers. In this system, the user
selects a cloud storage provider where his/her data will
live, such as Dropbox or Google Drive. Gaia then en-
crypts data prior to storing it in the cloud provider, ensur-
ing that the provider (and anyone who hacks it) has zero
visibility of the data. With this model, users can use their
pre-existing storage services for Blockstack without hav-
ing to trust them. Furthermore, unlike with Ethereum and
other blockchains, data will not have to be stored on the
blockchain, ensuring that the blockchain can scale.8

We used the following components of Blockstack to
produce YakStack:

* Blockstack Core:
Blockstack protocol

reference implementation of

¢ Blockstack Browser: tool to run Blockstack internet
using a local instance of Core

* Blockstack.js: library for profiles, authentication,
and storage’

The most important component of YakStack is multi-
reader storage, which is the ability to aggregate data
from multiple users. This was the main challenge of our
project, because data is confined to each user's device and
must somehow be combined with other users' data with-
out a central storage in place. The following paragraphs
detail how a user would navigate YakStack, and how the
app works with Gaia to enable multi-reading. Figure 2
maps YakStack's components.

2.2 User Authentication

Users are required to register a Blockstack ID (e.g.
name.id) prior to signing in to YakStack. Clicking Yak-

7Ali, Shea, Nelson, Freedman, Blockstack: A New Internet for De-
centralized Applications

8 Ali, Shea, Nelson, Freedman, Blockstack: A New Internet for De-
centralized Applications

“http://blockstack.github.io/blockstack.js/index.html

Blockstack ID

Blockstack
Authentication

ejep 104

Blockstack W

Firebase Core

Figure 2: map of YakStack components

Stack's sign-in button invokes Blockstack's authentica-
tion process (top of fig. 2). This sets off two actions.

First, the user's data (ID, posts, votes) is sent to Block-
stack Core (arrow from Authentication to Core in fig. 2).
From there, Blockstack communicates with the user's lo-
cal Gaia storage via Blockstack.js functions getFile() and
putFile() to read and write files. Here, YakStack writes
user posts to a JSON file that Gaia stores.

Second, the ID is recorded in Firebase (arrow from
Blockstack to Firebase in fig. 2), which tracks the Block-
stack users that have signed in to YakStack. This enables
us to distinguish active users of YakStack from other
Blockstack users, so that we only have to parse data from
active users for multi-read storage.

2.3 Using Firebase for Multi-Reader Storage

Using a database to record IDs is not technically decen-
tralized, but it serves as the minimum workaround to get
multi-reader storage to work. Blockstack engineer Ken
Liao told us that Blockstack does not yet support the abil-
ity to retrieve the users of a specific application, and rec-
ommended that we store the users in a database for the
time being.

We decided to record only IDs, rather than additional
data, for two main reasons. First, this keeps all remaining
data local and secure in each user's Gaia storage, thus
maximizing decentralization. Second, Firebase has no
awareness of where or how the IDs are used; anyone
viewing this database would simply see a list of “.id”
strings. This means that Firebase has neither visibility

nor access to any functions that would touch Gaia stor-
age, so a hacker cannot exploit the IDs to retrieve data.

2.4 Single-Read with Gaia

When a user enters a post on the “User Profile” page, a
yak instance is produced that contains the text and the
votes it receives. This yak instance is then written to the
user's Gaia storage via putFile(), illustrated by the arrow
pointing from Blockstack to Gaia in fig. 2. Should a
user upvote or downvote his/her own posts on this page,
the vote number will automatically update in Gaia. The
“User Profile” page also displays the user's past yaks and
corresponding votes via getFile().

2.5 Multi-Read with Gaia

When a user goes to the “Trending Yaks” page, a pro-
cess is set in motion to retrieve posts from other users.
Blockstack retrieves the list of YakStack user IDs from
Firebase (arrow from Firebase to Blockstack in fig. 2),
then iterates through it and calls getFile() on each ID.
Gaia returns a JSON for each user (arrow from Gaia to
Blockstack), which the app parses and displays (arrow
from Blockstack to User).

2.6 Multi-Write Caveat

Upvote/downvote currently has partial functionality. Al-
though the vote buttons work on “Trending Yaks,” mean-
ing that the vote number updates on the screen, only the
votes a user exercises on his/her own posts will actu-
ally be saved in Gaia. This means that a person's votes
on other people's yaks will be reset when the page is
reloaded. This issue stems from the parameters of put-
File(). Most likely for security reasons, Gaia architecture
currently allows users to read data from other users, but
not write data to other users. As a result, unlike getFile(),
putFile() does not accept an ID argument and automati-
cally writes to the local storage of whoever is logged in,
restricting it to single-write. Therefore, a user can only
alter the votes of his/her own posts because he/she cannot
sign in to other users' accounts. This also explains why
a commenting feature would not work. The only solu-
tion we could brainstorm is a centralized storage mapping
votes to posts (to comments), so that a single call to put-
File() would update all votes properly; however, this con-
tradicts our goal of decentralizing Yik Yak, so we chose
not to implement it.

3 Evaluation

To register Blockstack IDs and test our app, we used the
regtest environment, which consists of Chrome Incog-
nito mode and Docker. In this mode, we could wire fic-
tional Bitcoins to our account and use them to purchase
Blockstack IDs, allowing us to test YakSatck with multi-
ple users.

Time to Load Posts for One User (ms)

Posts ‘ Trial 1 ‘ Trial 2 ‘ Trial 3 ‘ Trial 4 ‘ Trial 5 ‘ Avg.
10 0.265 | 0.235 | 0.375 | 0.200 | 0.240 | 0.263
20 0.215 | 0.215 | 0.310 | 0.225 | 0.205 | 0.234
30 0.235 | 0.210 | 0.435 | 0.215 | 0.205 | 0.260
40 0.205 | 0.345 | 0.200 | 0.215 | 0.195 | 0.232
50 0.220 | 0.250 | 0.255 | 0.455 | 0.190 | 0.274

0.3

o

2

2 02

o

[eh}

-

o

E 0.1

2

@

E

= 0

10 20 30 40 50

Number of Posts to Profile

Figure 3: Latency of Single-Read Retrieval

We decided to examine the latency of data retrieval,
since our app is constantly updating and fetching data
from storage. We divided our evaluation into two tests:

1. How long does it take to retrieve N posts from one
profile?

2. How long does it take to retrieve one post from each
of N profiles?

In our code we inserted performance.now() at the start
and endpoints of data retrieval, which returned two mil-
lisecond timestamps to us; calculating the difference be-
tween the two gave us the runtime.

3.1 Single-Read Latency

The first test times how quickly the “User Profile” page
loads upon sign-in, and is effectively a measure of single-
read latency. On a test user account, we created N =
{10, 20, 30, 40,50} posts, then ran 5 trials for each N.
The results are illustrated above in Figure 3.

The graph in Figure 3 suggests that single-user re-
trieval latency is constant time. This is corroborated by
how our method for fetching data works. The app re-
ceives the user's JSON via getFile(), which takes constant
time, and displays a parsed version of the JSON. From
this test, we concluded that single-read is efficient and
scalable for large numbers of posts.

Time to Load All Posts On First Retrieval (ms)

Users ‘ Trial 1 ‘ Trial 2 ‘ Trial 3 ‘ Trial 4 ‘ Trial 5 ‘ Avg.
10 3.665 | 3.260 | 4.225 | 3.785 | 3.675 | 3.722
20 4.091 | 3.899 | 3913 | 4218 | 3.978 | 4.020
30 4,145 | 4.789 | 4.683 | 4.597 | 5.088 | 4.6604
40 4816 | 5.535 | 4901 | 5436 | 5.192 | 5.176
50 5.524 | 5.312 | 5.402 | 5.891 5.851 5.596

Time to Load All Posts On Subsequent Retrievals (ms)

Users ‘ Trial 1 ‘ Trial 2 ‘ Trial 3 ‘ Trial 4 ‘ Trial 5 ‘ Avg.
10 0.385 | 0.395 | 0420 | 0.385 | 0.470 | 0411
20 0.670 | 0.540 | 0.540 | 0.660 | 0.510 | 0.584
30 0.653 | 0.832 | 0981 | 0.923 | 0.826 | 0.843
40 1.225 1.054 | 0979 | 1.160 | 1.390 | 1.162
50 1.316 | 1.233 1.100 | 1.235 1.130 | 1.203

@ First retrieval after signin @ Subsequent retrievals after signin

6
/:
Y
8 4
o —
<
S
£
= 2
@
>
2
€ ._________..-n-""'_
o —
0
10 20 30 40 50

Number of Users

Figure 4: Latency of Multi-Read Retrieval

3.2 Multi-Read Latency

The second test times how quickly the “Trending Yaks”
page loads, in two cases: 1) when the user clicks on this
page immediately after sign-in, and 2) subsequent occur-
rences when the user clicks on this page again. We tested
both cases because we expect a user to go back and forth
between the two pages as more yaks are posted. We reg-
istered N = {10, 20, 30, 40, 50} Blockstack IDs, posted
one yak on each account, and loaded “Trending Yaks”
from one of the accounts. Our results are displayed in
Figure 4.

The graph suggests that latency in both cases runs in
linear time with respect to the number of actively post-
ing users. The latency immediately after sign-in takes a
couple milliseconds longer than subsequent loads. This
linear trend stems from the multi-read process, in which

Blockstack traverses Firebase's list of users and runs
constant-time getFile() on each user, thus being a linear
time operation overall. We would normally run trials on
a higher amount of users, such as 100, 200, and so on to
verify this trend, but the processing time for registering
new IDs forced us to cap the amount at 50.

Since multi-read latency increases with more active
users, it could become a performance bottleneck as the
user base grows larger. Overall, single-read is efficient,
while multi-read could improve.

4 Future Work

We evaluated that YakStack has strong single-read per-
formance for reads and writes from a user's account to
his/her Gaia storage. However, the decentralized nature
of BlockStack imposes restrictions on what its functions

can achieve, so YakStack still misses some features that
Yik Yak contained. As Blockstack adds new multi-read
and multi-write capabilities, we plan to add more func-
tionality to YakStack, so it becomes a full-fledged version
of Yik Yak. Below, I will detail next steps for implement-
ing the missing features.

4.1 Improving Multi-Read

Our multi-read currently requires a minimal database of
user IDs. From our conversation with Ken, it seems that
Blockstack will release a function to aggregate the IDs of
users for each app. If so, we can transition from Firebase
to that function, which will bring more decentralization.

4.2 Adding Multi-Write

As described in Implementation, getFile() and putFile()
have different scopes. Whereas getFile() contains a pa-
rameter for user ID and thus enables multi-read, putFile()
automatically writes to the logged in user's storage, which
makes it single-write. This creates the issue where a
user's votes on his/her own content will save, but votes
across users will not. For the same reason, comments
across users will not save, so we did not implement this
feature.

Assuming Blockstack releases capabilities for multi-
write in the future, e.g. adds more parameters to putFile(),
we will implement the relevant functions to enable full
voting and commenting on YakStack. With a functioning
voting system in place, our “Trending Yaks” page will
become more relevant, since posts will now be interactive
with all users.

4.3 Censorship

A serious problem that has plagued anonymous platforms
is abuse of freedom by users. Lack of traceability em-
boldens certain individuals to post threats and cyberbul-
lying attacks, which can turn anonymous platforms into
a dangerous environment. To mitigate this situation, we
could add a feature where if a post is downvoted suffi-
ciently by users, we remove it and temporarily blacklist
the ID of the poster. We could also add a report button,
such that if the number of users who report a certain post
exceeds a threshold, we will again remove the post and
blacklist the poster.

5 Conclusion

This paper describes YakStack, a decentralized Yik Yak
built on the Blockstack blockchain with the goal of in-
creasing security and user ownership of data. Centralized
systems are trust-based and therefore leave users more
susceptible to attacks. YakStack aims to solve this issue
with a no-trust model, where data is stored locally when-
ever possible and any data recorded in Firebase cannot be
exploited. This is especially important to an anonymous

social network like Yik Yak, which guarantees confiden-
tiality of identity to its users. The decentralized nature
of the blockchain imposed some restrictions on how we
could implement multi-read and multi-write capabilities,
but as Blockstack continues to evolve and add new fea-
tures, we hope to bring more functionality to YakStack
and revive anonymous platforms.

References

Casey Newton. February 13, 2017. “Yik Yak Is Se-
cretly Pivoting to Group Messaging.” The Verge.
www.theverge.com/2017/2/13/14602798/yik-yak-pivot-
hive-group-messaging-college

J.P. Buntinx. July 26, 2015. “Decentralized Mes-
saging App Yik Yak Announces Anonymous Photo
Sharing While Collecting Data.” Bitcoinist.com.
https://bitcoinist.com/decentralized-messaging-app-yik-yak-
announces-anonymous-photo-sharing-collecting-user-data/

Muneeb Ali, Ryan Shea, Jude Nelson, and Michael J. Freed-
man. October 12, 2017. “Blockstack: A New Internet for
Decentralized Applications.” Blockstack Technical Whitepa-
per. Blockstack PBC.

Nick Statt. April 28, 2017. “Yik Yak, once valued at $400 mil-
lion, shuts down and sells off engineers for $1 million.” The
Verge. https://www.theverge.com/2017/4/28/15480052/yik-
yak-shut-down-anonymous-messaging-app-square

Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic
Cash System.

	Introduction
	What is Yik Yak?
	The Blockchain
	Goal
	Related Work

	Implementation
	Blockstack
	User Authentication
	Using Firebase for Multi-Reader Storage
	Single-Read with Gaia
	Multi-Read with Gaia
	Multi-Write Caveat

	Evaluation
	Single-Read Latency
	Multi-Read Latency

	Future Work
	Improving Multi-Read
	Adding Multi-Write
	Censorship

	Conclusion

